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Abstract

A rigorous pseudo two-dimensional model to simulate the cycling performance of a lithium ion cell is compared with two simplified models.
The advantage of using simplified models is illustrated and their limitations are discussed. It is shown that for 1C or less discharge rates a
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imple ordinary differential equation (ODE) model can be used to predict accurately the potential as a function of time. For rates higher than
C, simplifications to the rigorous model are suggested that reduce the solution time for the model.

2005 Elsevier B.V. All rights reserved.
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. Introduction

The literature on modeling of lithium ion batteries is quite
xtensive [1–4]. The first model with two composite elec-
rodes and a separator was presented by Fuller et al. [5]
implified models were presented by Doyle and Newman
6] to develop design correlations under limiting cases. Ana-
ytic expressions for the specific capacity against discharge
ate were also presented by these authors [7]. The model pre-
ented by Fuller et al. [5] was extended by Ramadass et al.
17] to account for the decay in capacity of the cell with
ycle number. A side reaction leading to the formation of a
lm on the surface of the carbon particles at the anode was
roposed to occur during the charging process. The poten-
ial drop across the film was expressed as a function of the
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film thickness, which varied with time in accordance with
Faraday’s law. The loss of active material due to the side
reaction and the resultant additional drop in the anodic over-
potential were used to account for the capacity fade in the
cell. Further extensions to this model were made by Sikha et
al. [8] that included the change in the porosity of the elec-
trode material as a function of time. In all these models, the
concentration of lithium within the solid phase was either cal-
culated using the superposition principle [11] or solved for
rigorously, using a pseudo second dimension along the radius
of the particle. Since the concentration of lithium at the par-
ticle surface is the only variable of interest, this methodology
is cumbersome and time consuming. A very good approx-
imation of the concentration profile within the solid phase
was presented independently by Wang et al. [9] and Subra-
manian et al. [10] based on the integral approach outlined
by Ozisik [11]. In this second approach, the concentration
profile within the solid particle is approximated by a second-
degree polynomial whose coefficients are expressed in terms
of the average concentration of lithium inside the particle
and the concentration at the surface. Thus, the need to solve
3 Electrochemical Society Fellow. for the concentration profile within the solid phase is elimi-
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Nomenclature

aj specific area of the porous electrode ‘j’
(m2 m−3)

Aj surface area of the electrode ‘j’ (m2)
brug Bruggman’s coefficient
c concentration of lithium (mol m−3)
cs,j average concentration of lithium in the solid

phase of electrode ‘j’ (mol m−3)
c̄1,j solid phase concentration of lithium at the

surface of the sphere (mol m−3)
D1,j diffusion coefficient of lithium in the solid

phase inside electrode ‘j’ (m2 s−1)
D2,eff effective diffusion coefficient of lithium in the

solution phase (= D2,jε
brug
2 ) (m2 s−1)

D2 diffusion coefficient of lithium in the liquid
phase (m2 s−1)

F Faraday’s constant (C mol−1)
i0j,side exchange current density for the side reaction

(A m−2)
J applied current (A)
Jj local volumetric current density for

intercalation reaction (A m−3)
Js,j side reaction current (A)
Js,j local volumetric current density for side

reaction (A m−3)
k rate constant for electrochemical reaction

(A m−2 mol m−3)(1 + α)

L length of the cell (m)
Ms,j molecular weight of the side reaction product

(kg mol−1)
r radial coordinate (m)
Rj radius of the particle (m)
RSEI resistance of the film (� m−2)
R universal gas constant (J mol K−1)
t time (s)
T temperature (K)
Uθ local equilibrium potential (V) (as described

in Appendix A of Ref. [17])
V cell voltage (V)
x coordinate across the thickness of the cell (m)
y scaled radial co-ordinate (= r

Rj
L) (m)

Greek
α transfer coefficients of the electrochemical

reaction
ε volume fraction of a phase
φ local potential of a phase (V)
η over potential driving a reaction (V)
κ conductivity of the electrolyte (S m−1) (as

described in Appendix A of Ref. [17])

σeff effective conductivity of an electrode (= σεj)
(S m−1)

σ conductivity of the electrode (S m−1)
ρs,j density of the side reaction product (kg m−3)
δf film thickness (m)

Subscript
1 solid phase
2 liquid phase
j = n or p
p positive electrode
n negative electrode
s side reaction property
sep separator

nated. While most of these models adopt the porous electrode
approach, Haran et al. [12] presented a simpler representa-
tion of the electrode. This was first presented for the metal
hydride system and later extended to the lithium ion system
[13,14]. In this model, each electrode is represented by a sin-
gle spherical particle. This approach is popularly referred to
as the single particle model.

Each of the above approaches has some advantages com-
pared to the others as well as demerits. For example, while
the porous electrode model has the advantage of providing
a sophisticated account of the various physical processes
occurring in a battery, solving the model is very time con-
suming. The simplified single particle model is orders of
magnitude faster as shown in this work, however, it does
not account for all the physical processes, for example, the
solution phase diffusion limitations are ignored, thus the
validity of the model is limited. Incorporation of the poly-
nomial approximations [9–11] of the solid phase concen-
tration of lithium in the porous electrode models preserves
their sophistication while simultaneously reducing the solu-
tion time [16]. In simulating the performance of a lithium
ion cell over several cycles, the battery model has to be
solved repeatedly during each cycle. Ideally, one would
expect for such occasions that the model is not time con-
suming and that it will provide a realistic portrait of the
physical processes that occur during cycling. In this context,
t
t
l
s

2

o
s
t

wo simplified models are compared to the rigorous pseudo
wo-dimensional model in terms of their accuracy in simu-
ating the cycling performance and the time required for their
olution.

. Model equations

The three approaches considered in this study are the rig-
rous pseudo two-dimensional model (or the P2D model), the
ingle particle model (or the SP model) and the porous elec-
rode model with the polynomial approximation (or the PP
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Fig. 1. Simplification of the rigorous two-dimensional model (a) to the pseudo two-dimensional (P2D) model (b) and the single particle (SP) model (c).

model). A detailed description of the underlying assumptions
in each model and the set of equations used are elaborated in
this section.

2.1. The pseudo 2D model

In this approach, the equations developed by Fuller et al.
[5] were modified to include capacity fade. The discussion
presented here follows the model developed by Ramadass et
al. [17]. The solid phase is assumed to comprise of identical
spherical particles of a predetermined size and diffusion in
the radial direction is assumed to be the predominant mode
of transport. The solution phase concentration and the poten-
tials were assumed to vary only in the ‘x’ coordinate, as shown
in Fig. 1(a). The reduction of the solvent (ethylene carbon-
ate) is assumed to occur in addition to the intercalation of

lithium in the carbon electrode during the charging process.
The entire contribution to the capacity fade is assumed to
be from this reaction. This reaction is assumed to have a
constant open circuit potential of 0.4 V versus Li/Li+ and
the products of this reaction are assumed to form a film of
known conductivity over the carbon particles. As a result
of this side reaction, a part of the flux that enters the car-
bon particle is lost irreversibly, resulting in a decrease of the
actual capacity of the cell. Further assumptions regarding
the mechanism of capacity fade and their validity are dis-
cussed by Ramadass [20]. The governing equations for this
model are very similar to those presented by Fuller et al. [5]
except for that, the flux at the anode is split into two com-
ponents: one for the intercalation reaction (Jn) and another
for the side reaction (Js,n). The thickness of the film formed
on the carbon particles is related to the side reaction flux by
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Faraday’s law as:

∂δ

∂t
= −Js,nMs,n

anρs,nF
(1)

where δ is the thickness of the film. The resistance of this
film results in an additional contribution to the overpotential
at the anode. Following Ramadass et al. [17] no side reaction
at the cathode is considered. Hence, the overpotential (ηn) for
the anode (the negative electrode) is given by:

ηn = φ1 − φ2 − Uθ
n − (Jn + Js,n)δ

anκ
(2)

while that for the cathode is given by:

ηp = φ1 − φ2 − Uθ
p (3)

The diffusion inside the solid phase is represented by the
Fick’s laws as:

∂c1,j

∂t
= D1,j

1

r2

∂

∂r

(
r2 ∂c1,j

∂r

)
(4)

where c1,j denotes the concentration of lithium inside the
solid in the electrode ‘j’ and D1,j the corresponding diffusion
coefficient.

The solution of the set of equations for this rigorous model
involves two different length scales: the thickness of the cell
(L) is several orders of magnitude higher than the average
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adius (Rj) of the particles that constitute the electrode. Quite
ften the numerical instabilities that arise due to the presence
f two or more length scales are circumvented by the use
f appropriate scaling [15,18,19]. In the present case, the
ethodology outlined in Appendix E of Ramadass [20] was

mployed and the radial coordinate was scaled as follows:

= r
L

Rj

(5)

nd the scaled radial coordinate is termed as ‘y’ (See Fig. 1b).
n the solution of this rigorous model (see equations in
able 1), the concentration of lithium inside the solid phase
c1,j) is solved for at each node point along the ‘y’ coordinate
nd the value at y = L is used in the kinetic expressions for
epresenting the surface concentration c̄1,j . Further details
bout this model are presented in Appendices A and B of
amadass et al. [17].

.2. The single particle model

In the second approach, the single particle model [12–14]
s considered. Each electrode is represented by a single spher-
cal particle whose area is equivalent to that of the active
rea of the solid phase in the porous electrode. A schematic
f this model is provided in Fig. 1c. This model assumes
hat the limitations posed by the solution phase of the cell
re negligible. Hence, the solution phase is not considered
hile developing the model equations. For example, φ2 are

et to zero in Eqs. (2) and (3). The assumptions regarding the
ide reaction are maintained in this approach as well. This
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model is further simplified when the concentration within
the sphere is approximated by a parabolic profile [9–11]. The
solid phase concentration is represented by a second order
polynomial whose coefficients are expressed in terms of the
average concentration cs,j and the concentration at the surface
of the sphere, c̄1,j . This reduces Eq. (4) to a first order ODE
and an algebraic equation, eliminating the dependence on the
spatial variable ‘r’. The resultant equations are: [9,10,14]

∂cs,j

∂t
+ 15D1,j

R2
j

(cs,j − c̄1,j) = 0 (6)

5D1,j

Rj

(c̄1,j − cs,j) + Jj

AjF
= 0 (7)

The initial condition to Eq. (6) is:

cs,j|t=0 = c1,j,0 (8)

where c1,j,0 denotes the concentration of lithium inside elec-
trode ‘j’ at the beginning of charge or discharge. The surface
concentration c̄1,j is then used in the place of c1,j|r=Rj in the
flux expressions. For an elaborate derivation of Eqs. (6)–(8)
see Subramanian et al. [10].

2.3. The porous electrode model with the polynomial
approximation
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The third approach considered here involves the incorpo-
ation of the parabolic approximation [9–11] into the P2D
odel. The resultant equations of this approach (the PP

pproach) retain the complexity of the previous models based
n the porous electrode theory, but are mathematically sim-
ler. All assumptions presented for the P2D model hold good
or the PP model as well.

In addition to those, in the PP approach it is assumed that
he concentration within each spherical particle of each elec-
rode can be approximated with a parabolic profile (similar to
he SP model) and as a result, the solution of Eq. (4) at each
oint along the radial coordinate is now not required. In the
et of governing equations for the P2D model, the solid phase
oncentration (c1,j) which was obtained from the solution of
q. (4) is now replaced with the concentration at the surface
c̄1,j) as given by the solution of Eqs. (6)–(8) above. All other
quations for the PP approach remain the same as the P2D
pproach.

The complete set of governing equations for each
pproach is shown in Table 1. Fig. 1 shows the simplification
f the rigorous two-dimensional model to the pseudo two-
imensional model and into the single particle model. The
olid phase potential φ1,n is arbitrarily set to zero at x = 0.
he other boundary conditions obtained from jump material
nd charge balances express the continuity of flux across each
oundary.

At x = 0 and x = L:

∂φ2

∂x
= 0 (9)
. Simulation of the cycling performance

Simulation of each cycle consists of three steps. Charg-
ng is carried out at constant current until the cutoff voltage
or charge (4.2 V) is reached and then the cell is charged in
he constant voltage mode, until the current drops to 50 mA.
t is then followed by discharge at a constant current until
he cutoff voltage for discharge (3.0 V) is reached. During
he simulation of cycling performance, the model is solved
epeatedly maintaining all parameters at constant values (as
hown in Table 2). The fade in capacity with cycling is
rought about by the additional side reaction flux (Js,n), the
ncrease in film thickness over time and the resultant change
n the anodic overpotential. The solution of the model equa-
ions for simulating the cycling performance is different from
hat of a single discharge curve in that there arise numerical
nconsistencies between values the variables solved for at the
ime between two consecutive steps. For example, the set of
alues for the dependent variables obtained at the end of a dis-
harge step does not always provide consistent initial values
or those variables at the beginning of the next charge step.
his issue has been discussed in detail by Wu and White [22].
s recommended by these authors an indigenous initializa-

ion subroutine DAEIS [22] is used to address this numerical
nconsistency. The solution of the model equations is car-
ied out using the FORTRAN solver DASRT [21]. For each
pproach, the corresponding set of model equations presented
n Table 1 are solved repeatedly to predict the profile of the
ell voltage as a function of time for 800 cycles.
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Table 2
List of parameters (all values are from Ref. [17] unless otherwise stated)

Symbol Anode Cathode Separator

σ (S m−1) 100 100
ε1 0.49 0.59
ε2 0.485 0.365 0.724
brug 4.0 4.0 4.0
D1 (m2 s−1) 3.9e−14 1.0e−14
D2 (m2 s−1) 7.5e−10 7.5e−10 7.5e−10
k ((A m−2 mol m−3)3/2) 4.854e−6 2.252e−6
cmax

1 (mol m−3) 30555 51555
c1,0 (mol m−3) 0.03 × 30555 0.95 × 51555
c2,0 (mol m−3) 1000 1000 1000
Rj (m) 2e−6 2e−6
Li (m) 88e−6 80e−6 80e−6
φ2,0 0 0 0
Uref,s (V) 0.40
RSET (� m−2) 0.01
i0
j,side (A m−2) 1.0e−11a

Ms,j (kg mol−1) 7.3e−4
ρs,j (kg m−3) 2.1e−3
κs,j (S m−1) 1.0e−2a

Aj (m−2) 603.06e−6 531.3e−6
α 0.5 0.5
t+ 0.363 0.363
F (C mol−1) 96487
R (J mol K−1) 8.314
T (K) 298.15

a Assumed.

4. Results and discussion

The validity of the parabolic approximation has been
established by Wang et al. [9] and Subramanian et al. [10],
and hence is not repeated here. As shown in Ref. [10], the
approximation is very efficient for low to moderate rates of
discharge. There are two possible limitations that may arise
to this approximation. Under very high rates of discharge, the
approximation of the concentration profile inside a spherical
particle with a second-degree polynomial is not sufficiently
accurate. To address this limitation, Subramanian et al. [10]
recommended higher order approximations of the concentra-
tion profile. The second limitation arises from the inability of
the approximation to capture the concentration profile at very
short times accurately. Wang and Srinivasan [23] suggested
an empirical correction factor to the average concentration
(cs,j) that is obtained from Eqs. (6)–(8) to simulate the tran-
sient profile of the concentration more accurately.

Fig. 2a shows the discharge profile obtained from all the
three models at 0.2C as well as 1C rates of discharge. As
observed at rates as low as 0.2C, both the approximate mod-
els (SP and PP) provide a very accurate profile. This figure
validates the PP as well as the SP model independently. Both
these models compare well with the rigorous P2D model.
There is almost negligible deviation of the predictions from
the SP model from those of the porous electrode-based mod-
e
t
S

Fig. 2. (a) Validation of the SP and the PP models. (b) Comparison of the
error between the approximate models (PP and SP) and the rigorous model
(P2D) at various rates of discharge.

mic scale. These show that the SP model is as valid as the
porous electrode models for discharge rates as high as 1C.
As observed from this figure, the error between the PP and
the rigorous P2D model is of the order of 1e−5 for the 0.2C
rate. This establishes the validity of the polynomial approx-
imation even in a sophisticated porous electrode model. The
set of parameters used to obtain these curves is presented in
Table 2. Fig. 3 shows the discharge curves predicted from the
SP and the PP models for fresh as well as 800 cycles at the
0.2C rate. The good degree of fit between the predictions of
both the models not only reinstates the results from Fig. 2, but
also justifies the claim that the SP approach is quite success-
ful in simulating the cycling performance of a cell as much
as a rigorous model based on the porous electrode theory.
ls. The absolute values of the percentage of error between
he PP and the P2D models as well as those between the
P and the P2D models are shown in Fig. 2b on a logarith-
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Table 3
Comparison of the PP and the SP models with the P2D model

Rate of discharge Percentage error between the PP
and the P2D models

Percentage error between the SP
and the P2D models

Cycle 1 Cycle 800 Cycle 1 Cycle 800

0.2C 1e−5 4e−5 1e−3 2.42e−2
1C 0.175 1.112 3.404a 3.450b 6.70a 7.12b

2C 0.013 0.135 59.37a 37.30b 67.43a 47.05b

a With parameters from Table 2.
b With modified parameters (see text).

The limitations of the SP model as compared to the porous
electrode approach are presented in Fig. 4. The discharge
curves at higher rates are shown for cycle 1. Despite the good
agreement with the porous electrode models until the 1C rate
there is a significant deviation at higher rates. Table 3 presents
the total error out of the SP and the PP approaches as com-
pared to the P2D approach, for various rates at cycle 1 and
800. The vast difference between the profiles predicted for the
2C case is, however, expected. During low rates of discharge
the limitations from the solution phase are not as significant
as those presented by the solid phase. Hence, the assumption
that the solution phase limitations are negligible stated in
Section 2.3 is not violated under these conditions. The solid
phase is treated alike in the PP as well as the SP model; so,
the difference between the two models is virtually negligi-
ble at the 0.2C rates. However, at rates of discharge as high
as 2C, not only are the restrictions posed by the transport in
the solution phase important [24], but also the dependence
of the kinetic expression on the solution phase concentration
is significantly different for the two models. Whereas the PP
model follows the change in the solution phase concentra-
tion via the material balance in the solution phase, the SP

F
P

model assumes the concentration to be constant throughout
discharge. This is reflected in the difference in the slope of
the discharge plateaus between the two models in Fig. 4. Note
that no such difference is observed between the two models
at the 0.2C rate in Fig. 1, which substantiates the assumption
that the contribution of the solution phase is not significant
at rates of discharge below 1C. To validate the argument that
the difference between the PP and the SP models at higher
rates is because of the solution phase limitations, the solution
phase conductivity (κeff) was increased by a factor of two and
the solution phase diffusion coefficient (D2,eff) was set to a
very high value (1e−3 m2 s−1) in the PP model. The revised
profiles are also shown in Fig. 4. As observed, at 1C rate
the change is minimal. However, at the 2C rate, the revised
profile shows a better agreement with the SP model; still a
complete agreement between the two models is not obtained,
since the value for the solution phase concentration in the
kinetics expression continues to be a constant. The signif-
icance of the change in the solution phase concentration is
illustrated in Fig. 5. Whereas for discharge rates up to 1C the
change in the solution phase concentration is less than 10%,
for the 2C rate it is as high as 40%. The SP model completely

F
m
p

ig. 3. Comparison of the prediction of the cycling performance from the
P and SP models at 0.2C rate.
ig. 4. Comparison of the discharge curves predicted from the PP and SP
odels at higher rates: (a) with parameters from Table 2 (b) with modified

arameters (see text).
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Fig. 5. Change in the solution phase concentration at various rates of dis-
charge as predicted by the PP model.

ignores the changes in the solution phase concentration, and
hence is incapable of predicting the discharge profile in the
kinetics dominated regime. An alternate discussion is pro-
vided by Botte and White [25], wherein the inclusion of the
activity coefficient term in the solid phase was suggested to
improve the predictions at high rates.

The computational time for 800 cycles for all the three
approaches is presented in Table 4. Hundred node points
were used to approximate each coordinate using the three-
point finite differences scheme for each electrode in the P2D
and the PP models. The SP model has a distinct advantage
over the porous electrode models, in terms of the compu-
tational time, despite its limitations in terms of accuracy at
higher rates. Nevertheless, the PP model exhibits a good effi-
ciency both in terms of accuracy as well as computational
time, as observed from Tables 3 and 4. The incorporation
of the parabolic approximation [9–11] reduces the computa-
tional time by at least 70%. The choice of DASRT coupled
with DAEIS is found to be a robust solver suitable for solv-
ing the models repeatedly during the simulation of the cycling
performance of the cell, and hence is ideal for capacity fade
analysis. DASRT [21] is a variable time step solver with an in
built zero crossing detection feature. This feature of DASRT,
along with appropriate constraints, enables one to interpo-
late to the exact time of transition from one step to another

T
C

M

P
P
S

(charging to discharging, for example). The capabilities of
DAEIS are addressed by Wu and White [22].

5. Conclusion

Two approximate models (SP and PP) were used to sim-
ulate capacity fade in lithium ion batteries and compared to
a complete model (P2D). Both of the approximate models
compared well with the P2D model up to 1C rate of dis-
charge. Incorporation of the parabolic approximation for the
solid phase concentration of the diffusing species signifi-
cantly reduces the computational time as compared to the
P2D model for both the SP and the PP models, while still
retaining sufficient accuracy as reported by Subramanian et
al. [10], even for a complex sandwich model. The low solu-
tion time as well as a high degree of accuracy identifies these
models as suitable for simulating the cycling performance of
a cell, when the model equations are solved over and over.
The SP models neglects solution phase limitations, and hence
is not accurate at rates beyond 1C, when concentration gradi-
ents in the liquid phase become the limiting factor. While the
SP model can be used successfully to simulate the cycling of
lithium ion batteries up to the 1C rate, the PP model is best
suited for rates higher than 1C, since there is no significant
loss of accuracy and at the same time the computational time
i
o
o

A

f
t

R

[

able 4
omparison of the computational cost for the three models

odel CPU time for 800 cycles (s)

2D 1.12e5
P 9600
P 27
s greatly reduced. DASRT is identified as the suitable choice
f solver due to its robustness in solving the model equations
ver 800 cycles.
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